If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60r^2+4r-160=0
a = 60; b = 4; c = -160;
Δ = b2-4ac
Δ = 42-4·60·(-160)
Δ = 38416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{38416}=196$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-196}{2*60}=\frac{-200}{120} =-1+2/3 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+196}{2*60}=\frac{192}{120} =1+3/5 $
| 20=x/3+9 | | p+9=-8p | | 4x+(x-8)=7x-16 | | 7p+3=-137 | | 21+7r=21 | | 4x^2-3=19 | | 1.50x+3.00=9.00 | | w/4+10=17 | | 4x+2x-3=33 | | x−4=2x+7 | | 3x+15+4x+25=180 | | -22=-3x+2 | | 4x+8=-4x+16 | | 2(x-10)=3x+40 | | X^2+15x=8x+6 | | 32+3x=31+4x | | x+4=6.5 | | 5+x=3(x-7)=6 | | 7x+13=−2x−18 | | 2(3a+1)-4(a+3)=16 | | 8h-32=16h-96 | | 1=u/10-10 | | 6a^2-10a-13=0 | | u/64=4 | | X^2+15x=8x | | 12j-12=24j+48 | | u/4-17=13 | | x+(3x-3)+(2x+2)=51 | | 8g+12g+10=20-50 | | 4x-22+x+11=10x-4 | | 8u+9=2u+37 | | 3(3u+4)+3(5u-19)=115 |